Основными металлическими магнитомягкими материалами, применяемыми в электротехнике, являются пермаллои, альсиферы и низкоуглеродистые кремниевые стали.
Пермаллои — пластичные железоникелевые сплавы содержанием никеля от 36 до 80 %. Для улучшения тех или иных свойств в них вводят молибден, хром или медь, получая легированные пермаллои. Пермаллои, содержащие 36—50 % никеля, называются низконикелевыми, а 60—80 % — высоконикелевыми.
Все пермаллои отличаются высокими магнитными характеристиками, что обеспечивается не только их составом и химической чистотой, а также специальной тепловой обработкой. При этом сплав нагревают со скоростью 400—500 °С в час, выдерживают при 1000—1150°С в течение 3—6 ч, затем охлаждают со скоростью 100—200 °С в час до комнатной температуры.
Некоторым пермаллоям необходим повторный нагрев до 600 °С и быстрое охлаждение со скоростью 150 °С в минуту. Наилучшие магнитные характеристики имеют пермаллои, отжигаемые в вакууме.
Все пермаллои чувствительны к механическим деформациям, наклепу при резке, штамповке и другим механическим воздействиям. Поэтому детали из пермаллоя, полученные этими способами, подвергают дополнительной тепловой обработке — отжигу (по определенному режиму).
Пермаллои поставляют в виде лент толщиной 0,002—1,5 мм, листов толщиной 1—2,5 мм и прутков диаметром 8—60 мм и более. Низконикелевые пермаллои применяют для изготовления сердечников дросселей, малогабаритных трансформаторов и магнитных усилителей, а высоконикелевые — деталей аппаратуры, работающих на частотах несколько выше звуковых.
Альсиферы представляют собой нековкие хрупкие сплавы, состоящие из 5,5—13 % алюминия, 9—10 % кремния, остальное — железо. Альсиферы предназначались для замены дорогих пермаллоев, но удалось это сделать в сравнительно ограниченной области их применения. Из альсифера изготовляют литые сердечники, работающие в диапазоне частот не более 20 кГц, так как на более высоких частотах в них возникают большие потери на вихревые токи. Кроме того, из альсифера отливают полые детали с толщиной стенок не менее 2 мм.
Трансформаторные стали. Электротехнические кремнистые стали представляют собой низкоуглеродистые стали (0,04%), в которые вводят от 0,8 до 4,8 % кремния для улучшения магнитных свойств. Кремний, находящийся в стали в растворенном состоянии, реагирует с закисью железа FeO. При этом из стали выделяется чистое железо и образуется кремнезем 2FeO + Si →2Fe+Si02.
Кремнезем повышает удельное сопротивление стали, что снижает потери на вихревые токи. Кремний также способствует росту кристаллов железа, что повышает уровень магнитных характеристик стали. Введение больших количеств кремния в сталь улучшает все магнитные характеристики, но вызывает ее повышенную хрупкость, исключающую изготовление из нее штампованных деталей. Поэтому вводят кремний в сталь в количестве, не превышающем 4,8 %.
Листы кремнистой стали изготовляют прокаткой заготовок в нагретом или не нагретом состоянии. В соответствии с этим различают горячекатаную и холоднокатаную кремнистую сталь.
Как известно, железо имеет кубическую структуру кристаллов и намагничивается наиболее интенсивно, когда направление магнитного поля совпадает с направлением ребра куба кристалла. Поэтому для улучшения магнитных свойств листы электротехнической стали прокатывают в холодном состоянии в одном и том же направлении, после чего отжигают в атмосфере водорода при 900 °С.
При прокатке листов стали в одном и том же направлении кристаллы железа ориентированы преимущественно в направлении прокатки. При последующем отжиге листов стали из материала удаляются примеси, снижающие его магнитные свойства (углерод, кислород). Кроме того, при отжиге деформированные прокаткой кристаллы железа принимают прежнюю форму.
Холоднокатаные кремнистые стали, кристаллы железа которых расположены преимущественно в направлении прокатки, называют текстурованными.
Улучшенные магнитные характеристики наблюдаются у холоднокатаных сталей только при совпадении направления их прокатки с направлением магнитного потока. В ином случае все магнитные характеристики холоднокатаных текстурованных сталей ниже, чем горячекатаных.
Поэтому холоднокатаные стали наиболее рационально применять в ленточных сердечниках и других конструкциях, где направление магнитного потока совпадает с направлением прокатки.
Электротехническую сталь прокатывают в листы и ленты толщиной от 0,05 до 1 мм. Это доступный и дешевый материал. Для сердечников электрических машин, имеющих круглую форму, применяют горячекатаные стали, а также холоднокатаные малотекстурованные, которые обладают лучшими магнитными свойствами, чем горячекатаные.
Обозначения марок электротехнической стали расшифровываются следующим образом: буква Э — «электротехническая сталь»; первые цифры 1, 2, 3 и 4 после буквы Э —степень легирования кремнием, а именно: 1 — слаболегированная сталь с содержанием кремния в пределах 0,8—1,8%, имеющая удельное объемное сопротивление 0,2•10 — 6 Ом•м; 2 — среднелегированная с содержанием кремния в пределах 1,8—2,8% (0,40-10 -6 Ом-м); 3 — повышенно легированная сталь с содержанием кремния в пределах 2,8—3,8% (0,50•10 -6 Ом• м); 4 — высоколегированная сталь с содержанием кремния 3,8—4,8% (0,60• 10-6 Ом-м). Вторые цифры (от 1 до 8) указывают на важнейшие магнитные свойства: 1 — нормальные удельные потери; 2 — пониженные потери; 3 — низкие потери; буква А — особо низкие потери; 4 — гарантированные значения потерь при частоте 400 Гц и магнитной индукции в средних по силе полях; 5 — гарантированное значение относительной магнитной проницаемости в слабых магнитных полях; 6 — гарантированное повышенное значение относительной магнитной проницаемости в слабых магнитных полях; 7 — гарантированное значение относительной магнитной проницаемости в средних магнитных полях; 8 — гарантированное повышенное значение относительной магнитной проницаемости в средних магнитных полях. Третья цифра (0) означает холоднокатаную текстурованную сталь; третья и четвертая цифры (00) означают холоднокатаную малотекстурованную сталь. Примеры обозначения марок: Э41, Э48А, Э3100, Э330А.
В трансформаторостроении применяют листовую и рулонную электротехническую сталь преимущественно толщиной 0,35 и 0,5 мм. Применение стали пониженной толщины сказывается благоприятно на снижении потерь на вихревые токи.
«Изолирующие и защитные покрытия трансформаторных сталей»
Магнитопроводы трансформаторов собирают из пластин электротехнической стали, изолированных пленкой жаростойкого покрытия или лака.
Магнитопроводы ремонтируют частично и полностью, в зависимости от степени повреждения.
Очаги прогара и оплавления активной стали расчищают, снимая образовавшиеся наплывы металла карборундовым камнем или вырубая зубилом. После очистки поврежденного участка от наплывов металла частично распрессовывают пластины магнитопровода на этом участке, отделяют сварившиеся кромками пластины друг от друга, и очистив этот участок от остатков старой изоляции и металлических опилок, изолируют пластины снова.
Полная разборка и перешихтовка магнитопровода необходима при таких тяжелых повреждениях, как «пожар стали», при котором может выйти из строя значительная часть пластин активной стали магнитопровода и изоляционных деталей.
Очистку листов стали (пластин) магнитопровода от старой изоляции осуществляют механическим и химическим способами, а также отжигом и отпариваем в горячей воде.
Механический способ используют преимущественно для очистки пластин горячекатаной стали обычно на станках с вращающимися стальными кардолентными щетками. Этот способ наиболее распостранненый и простой, обеспечивающий быструю очистку стали, но возникающая шлифовка поверхности увеличивает потери в стали.
Химический способ очистки позволяет легко удалять с пластин лаковую и бумажную изоляцию. При удалении лаковой изоляции пластины погружают в специальную ванну с каустической содой на 15 – 20 минут, затем вынимают и промывают проточной горячей водой и сушат.
Способом отжига в специальных термических печах при 300-500 0С используют для очистки пластин, покрытых тонкими листами бумаги и лаками. Применяют редко из – за резкого снижения магнитной проницаемости и увеличения потерь в стали вследствие образования окалины на поверхности пластин и изменения структуры стали, кроме того идет загрязнение атмосфе5ры продуктами сгорания бумаги и лака.
Наиболее простой способ удаления бумажной изоляции с пластин – отпаривание в воде, нагретой до 90-100 0С. Для ускорения отслоения добавляют слабый раствор каустической соды.
После очистки любым из способов пластины изолируют снова с обеих сторон однократно и двукратно пленкой лака и запекая ее.
Основным повреждением шихтованных сердечников является порча изоляции вследствие повышения температуры магнитопровода. Порча изоляции, в частности лака, отражается в виде высыхания и потрескивания. В следствие повреждения изоляции происходит короткое замыкание, которое приводит к спайке трансформаторных листов. Для предупреждения повреждения сердечников необходимо следить за нагрузкой трансформатора, а следственно, за рабочей температурой трансформатора, производить проверку на наличие повреждений в изоляции.
Добавить комментарий